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SUMMARY

A very simple model based on the three-dimensional desingularized boundary integral method is applied
to study the evolution of bubble(s) with or without the presence of solid structures. The choice of the
desingularization parameters, which is crucial to the success of the method, is studied in the context of
bubble dynamics. With the proper choice of parameters, the new model is far more efficient than
previous models with virtually the same level of accuracy being achieved. This is largely attributed to the
simplicity of the desingularization method. Furthermore, the new model offers a simple and attractive
way for mesh refinement. Although it has limitations in the sense that, with this model the time stepping
tends to slow down as two surfaces approach each other, this can be easily rectified by switching over to
a direct method so that the two surfaces can be drawn closer as required in the context of jet impact.
After this the new model can be reinstated to treat the complicated doubly connected geometry involving
toroidal bubbles that would otherwise be very difficult to deal with. Copyright © 1999 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

One primary advantage of the boundary integral method (BIM) over other methods in the
simulation of three-dimensional bubbles is that the dimensions of the problem are reduced by
one, which greatly conserves the computational effort. Thus far, most of the three-dimensional
computations for bubble dynamics have been carried out using the direct formulation in which
both the potential and its normal derivative are involved in the integral equation [1]. One of
the key issues in the implementation of the direct formulation is the accurate determination of
material velocity on the discretized boundary, which is a non-smooth surface. A global or local
surface interpolation scheme is usually needed to define the normal direction and tangential
plane on the described surface. Harris [2] used an averaging of linear approximations on the
surface element. However, this algorithm suffers from non-convergence under mesh refine-
ment, as noted by Blake et al. [3]. Chahine et al. [4] used quadratic polynomials to fit the
surface locally. However, as also noted by Blake et al. [3], the method fails for certain
arrangements of the nodes and is thus not robust. Blake et al. [3] favoured the use of radial
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basis functions over other alternatives, since they were claimed to be universally applicable.
However, as noted in a recent paper by the present authors [5], the interpolation scheme via
radial basis functions is based on a bivariate representation z= f(x, y) of the surface. As a
result, a new orientation of Cartesian axes must be chosen once a part of the bubble surface
becomes parallel to the z-axis (cf. Reference [3]). Recently, the authors [5] proposed the use of
a trivariate interpolation scheme based on the nine-noded Lagrangian element. The trivariate
representation is universal in that it can be applied anywhere on the bubble surface regardless
of surface orientation. However, this approach may be cumbersome if mesh refinement is
carried out as the bubble evolves or when the bubble undergoes topological changes from a
singly connected region to a doubly connected region.

Indirect methods, in which the potential is represented as either single-layer (source
distribution) or double-layer (dipole distribution) potential, have also been explored for both
the axisymmetric and two-dimensional bubbles. Blake and Gibson [6] used a discrete ring
source distribution to approximately represent the cavitation bubble and the adjacent free
surface. Boulton-Stone [7] tried both source and dipole distribution methods. One of the
advantages of the indirect methods over the direct methods is that the analytical form of the
potential is obtained once the source/dipole density is found. However, this advantage is lost
for the present problem since, when calculating the velocity the differentiation of the potential
would give rise to some hyper–singular integrals, which cannot be interpreted in the sense of
the Cauchy principal value. Boulton-Stone [7] got around this problem by using a quadratic fit
of the bubble boundary. This, however, only seemingly removes the difficulty and results in a
much smaller velocity once the singularity is smoothed out. In fact, it is reckoned that this was
responsible for the abnormally early breakdown of this source method. Secondly, this also
makes the said method less attractive as compared with the direct formulation, where the
surface fitting is also required.

In the present paper, a desingularized indirect boundary integral method (DIBIM) is
adapted to study three-dimensional bubbles. This method was proposed by Cao et al. [8] for
general potential problems and was found to be advantageous over the conventional indirect
methods both in terms of efficiency and accuracy, provided that some desingularization
parameters are carefully chosen. With the proper choice of these parameters, we show that
DIBIM is a powerful tool for the simulation of the interaction between bubbles and solid
structures. As a result of the simplicity of the algorithm, the computational time and storage
requirements are greatly reduced. More importantly, it can easily incorporate a mesh refine-
ment scheme and may be extended to bubbles undergoing topological changes from a singly
connected region to a doubly connected region. The last problem is not considered in the
present paper. However, this method has the limitations near bubble distortion and the final
phase of jet impact, and for this we propose a remedy of switching back to a direct method
at an appropriate point of time. Maximum numerical efficiency can be achieved in this way.

2. THE DESINGULARIZED INDIRECT BOUNDARY INTEGRAL METHOD

For large-scaled bubbles (millimetre or larger) considered in this paper, the effect of surface
tension is insignificant during most of the bubble’s lifetime and is thus neglected here [9]. For
small-scaled bubbles, surface tension can be very important throughout almost all of the
bubble’s lifetime and for this case, the following formulation must be modified to accommo-
date this effect. For potential flows, there exists a potential function f(x, y, z, t) in the fluid
region bounded by some bubbles and solid structures. A rectangular co-ordinate system
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(x, y, z) is adopted with the z-axis pointing vertically upwards (Figure 1). For brevity, only
cavitation bubbles are considered in this paper, although the extension to gas-filled bubbles is
straightforward. For the purpose of non-dimensionalization, Rm (the maximum bubble radius)
and Rm
r/(p�−pc) are chosen to be the length and time scales respectively, where p� is the
ambient pressure on the plane z=g, which passes through the centre of the bubble at
inception, and pc is the constant pressure inside the bubble. Then the non-dimensionalized
evolution equations can be written in a Lagrangian sense as

Dr
Dt

=9f, (1)

Df

Dt
=1+

1
2

�9f �2−d2(z−g), on the bubble surface, (2)

where r= (x, y, z) and d= [rgRm/(p�−pc)]1/2 is the buoyancy parameter, and the bubble
centre at inception is located at (0, 0, g). The initial conditions are derived by integrating the
Rayleigh–Plesset equation from the time of inception to the time when the bubble growth is
arrested. For cavitation bubbles, the initial value of the potential on the bubble, whose radius
is assumed to be 1

10 of the maximum radius, is given by (cf. Reference [10])

f(t0)= −2.58, at t0=0.0015527. (3)

The boundary conditions on the solid structure are given by

(f

(n
=0, (4)

where n is the normal direction of the solid boundary.
In line with the indirect boundary integral method (IBIM) [1], the following single-layer

potential is introduced:

f(P)=
&

S

s(Q)
�P−Q � dS(Q), (5)

where s is the unknown source density, �P−Q � is the Euclidean distance between the control
point P and the integration point Q. However, unlike the conventional IBIM, the integration
surface S here is not the physical boundary but a fictitious surface located outside the problem

Figure 1. A definition sketch of a bubble near a solid wall and the co-ordinate system used.
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domain [8]. This process of desingularization renders the integral (5) non-singular and the
integration can be replaced by a summation of concentrated singularities s(Qi) without any
apparent loss of accuracy [8]:

f(P)=%
i

s(Qi)
�P−Qi �

, (6)

and consequently, no numerical integration is needed, which greatly simplifies the solution
process and reduces computational cost. Also, the role played by the elements is only marginal
in the DIBIM (cf. the following discussions). Applying Equation (6) to Equations (3) and (4)
gives rise to a system of equations from which the source density function s(Qi) can be
determined. After the source density distribution is found, the material velocity of the bubble
can be obtained by direct differentiation of (6), which is another advantage of the current
method. The indirect formulation hence obviates the need to compute an accurate normal of
the surface, which is essential in direct boundary integral formulation in order to define the
surface velocity. With the source points being moved away from the original boundary, the
differentiation would not present any difficulty, as opposed to the conventional IBIM. After
the velocity is found, the evolution of the bubble and f according to Equations (1) and (2) is
computed by a simple Eulerian scheme. This scheme has been used in most of the previous
work on bubble dynamics [7,10,11], and therefore it is also adopted here in order to highlight
the major difference between the current method and other methods. However, more sophisti-
cated algorithms, such as the fourth-order Runge–Kutta method, may be worth trying in
order to obtain more accurate results. It was also found that, unlike the axisymmetric
problems, no artificial smoothing is necessary for the three-dimensional cases.

The desingularization actually results in a Fredholm integral equation of the first kind, and
thus the desingularization distance must be carefully chosen to avoid ill-conditioning. As noted
in Cao et al. [8], there exists an optimal distance that must be a function of the local mesh size.
They proposed that this distance from a point P on the original boundary along the normal
direction be represented by

Ld=LDa, (7)

where L is a parameter that reflects how far the integral equation is desingularized, D is the
local mesh size, which is chosen here to be the square root of the averaged area of the
triangular elements surrounding a vertex P, and a is a parameter that must be carefully chosen.
Following Cao et al., we fix a at 0.5 and try to find the optimal value for L from the simple
example of the Rayleigh bubble.

With the buoyancy effect being neglected (i.e. d=0) and the bubble being generated in an
infinite fluid (i.e. there are no solid structures or free surface present), the bubble undergoes
periodical expansion and contraction motion, which can be described by the Rayleigh–Plesset
equation. In terms of the non-dimensional variable, the half period of the oscillation is about
0.915, at which the bubble attains its maximum radius. Figure 2 shows the errors of the
computed bubble radius compared with the fourth-order Runge–Kutta solution of the
Rayleigh–Plesset equation at t=0.915 as a function of L. In this example, the bubble surface
was discretized into 980 elements. The normal vector at a boundary point P was estimated as
the weighted average of the normals to the triangular elements surrounding this point, with the
weights being the inverse of the area of each element (since the smaller the area is, the closer
the normal vector of this element is to the true normal at this point). Then the source points
are placed at a distance given by Equation (7) from the corresponding boundary points along
the estimated normal directions. It is worth remarking here that, unlike the calculation of
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Figure 2. Numerical error as a function of the desingularization distance L.

normal and tangential vectors in the direct formulations, the accuracy of the estimated normal
here is not essential since it only serves as a tool for placing the source points.

The trend shown in Figure 2 is very much similar to those shown in Figure 4 in Reference
[8], with a sharp decline in the error near L=0 and a broad range of L (0.55L51.5) in
which the error is very small and insensitive to the variation of L. When L is slightly increased
from 1.6, the computation stops prematurely at a rather early stage (t=0.04) and the bubble
fails to grow to its maximum size. In anticipation of the small bubble size at the end of the
collapse phase, a smaller value of L is preferred. In this paper, we set L=0.5.

3. RESULTS AND DISCUSSIONS

With the desingularization parameters having been fixed, we proceed to study various
problems involving the interaction between bubbles and a solid wall. When a solid wall is
placed below an initially spherical bubble, a jet directed towards the wall will be formed at the
final stage of bubble collapse if the buoyancy effect is weak. Owing to the presence of the wall,
we only need to modify the Green’s function in Equation (6) to include the images of Qi. In
this case, a total number of 1280 elements were used in the discretization of the bubble. For
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the ease of presentation, only the bubble profiles at the end of the collapse phase, calculated
from an axisymmetric model proposed by Wang et al. [11], the fully three-dimensional model
based on the direct approach as proposed by the present authors [5] and the current model, are
shown in Figure 3. The discrepancy between the axisymmetric code and the two three-
dimensional codes is quite obvious, with a time lag of about Dt=0.03 existing between them.
The same was also noticed by the present authors when they proposed the robust three-
dimensional model based on the nine-noded Lagrangian element in Reference [5]. For further
comparative testing, the configuration was simulated where the initial distance between the
bubble and the wall is substantially larger (ten maximum bubble radius). In this case, one
would expect that the bubble motion should resemble that of a Rayleigh bubble, at least
during the expansion phase, and thus the total expansion time should be very close to 0.915,
the half-period of a Rayleigh bubble. The total expansion time calculated from the two
three-dimensional models, which are based on quite different methodologies, is virtually
indistinguishable from this value, but the time obtained from the axisymmetric code is still 3%
larger than the above time. In the axisymmetric model of Wang et al. (as well as other
axisymmetric models), artificial smoothing is indispensable in order to damp out the numerical
instability, and this may have slowed down the bubble motion. On the other hand, no

Figure 3. Comparison of the bubble profiles at t=2.014, calculated from the axisymmetric model in [11] (dash line),
the fully three-dimensional model in [5] (solid line) and the new model (dotted line). The initial distance between the

bubble and the wall is 1.5 and the buoyancy effect is neglected (d=0).
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smoothing is required in the two three-dimensional models. Hence, the two three-dimensional
solutions, which agree very well with each other, are believed to be more accurate. As the
re-entrant jet approaches the opposite bubble surface, the approaching nodal points (coming
from opposite surfaces of the bubble) lead to an increasingly ill-conditioned matrix. An
increasingly small time step is required to maintain computational stability. The development
of the jet finally comes to a virtual halt. This effect is more severe in the case of the indirect
method because the nodal points are located inside the bubble instead of on the bubble
surface. Thus, the final computed time is t=2.019 for the indirect method compared with
t=2.026 for the direct method. This problem can be partially overcome by switching back to
the direct method at an appropriate point of time. With the indirect method, there is a
handsome saving of 89% in the CPU time per time step.

A methodology for computing toroidal bubbles (where the jet needs to be as close to the
opposite side of the bubble as possible so that a surgical cut can be made) is suggested as
follows. One can use the desingularized indirect method to compute the evolution of the
bubble until the jet comes close to the opposite wall of the bubble. One then switches to the
direct method to compute the final phase of jetting and the formation of the toroidal bubble.
The further evolution of the toroidal bubble is then computed by the indirect method.
Significant gain in overall computational efficiency can be achieved in this manner.

As the re-entrant jet is being developed, more and more nodes are drawn from other parts
of the bubble to the jet, where the curvature is highest, because of the Lagrangian method used
[cf. Equations (1) and (2)]. As a result, the elements in other part of the bubble are stretched
and this is ominous for the numerical accuracy and stability. Although no urgency for
remeshing in the computations prior to the jet impact was found, it may become a major issue
during and after the impact due to the expected large circulation around the bubble.
Fortunately, remeshing is relatively easier with the present model because the elements only
play a nominal role here.

Next, a fully three-dimensional bubble in the vicinity of a vertical wall is examined, where
the combined effects of buoyancy and the Bjernes force have caused the bubble to evolve in
a non-axisymmetric fashion. Of course, the axisymmetric code of Wang et al. [11] cannot be
used in this case. The bubble is initiated at a non-dimensional distance of 1.5 from the wall.
It can be seen from Figure 4 that the re-entrant jet during the collapse phase of the bubble
(t]1.8859) is essentially directed towards the wall but is diverted slightly upwards due to the
buoyancy effects. The sequence of events in Figure 4(a) is computed using the direct model in
[5]. In addition, the evolution of the bubble according to the DIBIM is shown next in Figure
4(b), while the results of Blake and Tong [12] are reproduced in Figure 4(c). It can be seen that
the three solutions show similar behaviour for bubble growth and collapse, while the two
three-dimensional models proposed by the present authors have predicted a slightly earlier jet
formation compared to Blake and Tong’s results. As is consistent with the previous example,
the jet corresponding to the new indirect model is arrested earlier than those corresponding to
the other two models. This is, however, more than amply compensated by 89% saving in the
CPU time compared with the direct model. As proposed earlier, one can always use the
indirect method for the initial computation for the purpose of computational efficiency before
switching over to the direct method in the final jetting phase.

Finally, it should be remarked that the great saving in computational cost obtained by the
current desingularized indirect model is achieved with a standard solver using the lower–upper
(LU) decomposition method. For very large linear systems, such as those encountered in the
present work, iterative methods will be more advantageous since the solution from the
previous time step can be used as a good initial guess.
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Figure 4. Evolution of a cavitation bubble near a vertical wall initially located at a distance 1.5 from the bubble
centre. The buoyancy parameter d=0.25. The results were calculated respectively from (a) the direct method in [5];
(b) the current indirect method; and (c) Blake and Tong’s method [12]. The wall position is indicated by a vertical line

in (a) and (b) and by the right-hand-side of the frame in (c).
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Figure 4 (Continued)

4. CONCLUDING REMARKS

In the present paper, a DIBIM is applied to the simulation of three-dimensional bubbles. With
the desingularization parameters being carefully selected, it is shown that the results are in
excellent agreement with those from the more complicated direct models proposed by others
[3,4] and by the present authors [5]. The computational time and storage requirements are
significantly reduced due to the simplicity of the new method, which is especially easy to apply
when mesh refinement is required. Although with this model the time stepping tends to slow
down as two surfaces approach each other, this can be easily rectified by switching over to a
direct method so that the two surfaces can be drawn closer as required in the context of jet
impact. After the impact process is completed, the new model can be reinstated to treat the
complicated doubly connected geometry involving toroidal bubbles.

REFERENCES

1. C.A. Brebbia, J.C.F. Telles and L.C. Wrobel, Boundary Element Techniques, Springer, Berlin, 1984.
2. P.J. Harris, ‘A numerical model for determining the motion of a bubble close to a fixed rigid structure in a fluid’,

Int. J. Numer. Methods Eng., 33, 1813–1822 (1992).
3. J.R. Blake, J.M. Boulton-Stone and R.P. Tong, ‘Boundary integral methods for rising, bursting and collapsing

bubbles’, in H. Power (ed.), BE Applications in Fluid Mechanics, vol. 4, Computational Mechanics Publications,
Southampton, 1995, pp. 31–72.

4. G.L. Chahine, T.O. Perdue and C.B. Tucker, ‘Interaction between an underwater explosion bubble and a solid
submerged body’, Tech. Rep. 86029-1, Traycor Hydronautics, Inc., 1988.

5. Y.L. Zhang, K.S. Yeo, B.C. Khoo and W.K. Chong, ‘Three-dimensional computation of bubbles near a free
surface’, J. Compt. Phys., 146, 105–123 (1998).

6. J.R. Blake and D.C. Gibson, ‘Growth and collapse of a vapour cavity near a free surface’, J. Fluid Mech., 111,
123–140 (1981).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1311–1320 (1999)



Y.L. ZHANG ET AL.1320

7. J.M. Boulton-Stone, ‘A comparison of boundary integral methods for studying the motion of a two-dimensional
bubble in an infinite fluid’, Comput. Methods Appl. Mech. Eng., 102, 213–234 (1993).

8. Y. Cao, W.W. Schultz and R.F. Beck, ‘Three-dimensional desingularized boundary integral methods for potential
problems’, Int. J. Numer. Methods Fluids, 12, 785–803 (1991).

9. J.R. Blake, B.B. Taib and G. Doherty, ‘Transient cavities near boundaries. Part 1. Rigid boundary’, J. Fluid
Mech., 170, 479–497 (1986).

10. J.P. Best, ‘The dynamics of underwater explosions’, Ph.D. Thesis, The University of Wollongong, Australia, 1991.
11. Q.X. Wang, K.S. Yeo, B.C. Khoo and K.Y. Lam, ‘The evolution of a gas bubble in a shallow water’, 12th

Australian Fluid Mechanics Conference, vol. 2, The University of Sydney, Sydney, 1995, pp. 823–826.
12. J.R. Blake and R.P. Tong, ‘Jet impact in collapsing bubbles’, 12th Australian Fluid Mechanics Conference, vol. 2,

The University of Sydney, Sydney, 1995, pp. 819–822.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1311–1320 (1999)


